论文标题
利用比色法来忠于数据可视化
Exploiting Colorimetry for Fidelity in Data Visualization
论文作者
论文摘要
多模式表征方法的进步助长了巨大的超维数据集的产生。颜色映射用于在不依赖多个预测的情况下传达二维(2D)表示的较高维度数据。但是,一个人如何构造这些颜色图会严重影响一个人对数据的准确感知。对于简单的标量字段,已证明在感知上均匀的颜色图和颜色选择可以改善研究领域的数据可读性和解释。在这里,我们回顾了在材料化学研究中经常发现的概念,并将概念从标量字段扩展到二维矢量字段和三个成分组成场,并将概念扩展到材料化学研究中,以实现高效率可视化。我们开发了Papuc和CMPUC的软件工具,以使研究人员能够利用这些比色学原理,并采用感知统一的颜色空间来对更高维度的数据表示形式进行严格有意义的颜色映射。最后,我们演示了这些方法如何在辨别材料结构,化学和特性中常规使用的显微镜和光谱中的数据可读性和解释的立即提高。
Advances in multimodal characterization methods fuel a generation of increasing immense hyper-dimensional datasets. Color mapping is employed for conveying higher dimensional data in two-dimensional (2D) representations for human consumption without relying on multiple projections. How one constructs these color maps, however, critically affects how accurately one perceives data. For simple scalar fields, perceptually uniform color maps and color selection have been shown to improve data readability and interpretation across research fields. Here we review core concepts underlying the design of perceptually uniform color map and extend the concepts from scalar fields to two-dimensional vector fields and three-component composition fields frequently found in materials-chemistry research to enable high-fidelity visualization. We develop the software tools PAPUC and CMPUC to enable researchers to utilize these colorimetry principles and employ perceptually uniform color spaces for rigorously meaningful color mapping of higher dimensional data representations. Last, we demonstrate how these approaches deliver immediate improvements in data readability and interpretation in microscopies and spectroscopies routinely used in discerning materials structure, chemistry, and properties.