论文标题

Monge-ampère重力作为$γ$ - 效率良好的限制

Monge-Ampère gravitation as a $Γ$-limit of good rate functions

论文作者

Ambrosio, Luigi, Baradat, Aymeric, Brenier, Yann

论文摘要

Monge-ampère重力是对古典牛顿引力的修改,其中线性泊松方程被非线性的monge-ampère方程所取代。本文与第三作者的先前作品精神的精神[Monge-ampère引力的双重偏差原理,2016年的双重偏差原则,2016年,对Monge-Ampère的重力的严格推导,用于有限数量的粒子。此推导的主要步骤是$γ-$融合的良好利率函数对应于一个大偏差原理的单参数家族。令人惊讶的是,派生的模型包括耗散现象。作为例证,我们证明它会导致一个空间维度的粘性碰撞。

Monge-Ampère gravitation is a modification of the classical Newtonian gravitation where the linear Poisson equation is replaced by the nonlinear Monge-Ampère equation. This paper is concerned with the rigorous derivation of Monge-Ampère gravitation for a finite number of particles from the stochastic model of a Brownian point cloud, in the spirit of a previous work by the third author [A double large deviation principle for Monge-Ampère gravitation, 2016]. The main step in this derivation is the $Γ-$convergence of the good rate functions corresponding to a one-parameter family of large deviation principles. Surprisingly, the derived model includes dissipative phenomena. As an illustration, we show that it leads to sticky collisions in one space dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源