论文标题
最大生成网络的最大蛋白样条洞察
Max-Affine Spline Insights into Deep Generative Networks
论文作者
论文摘要
我们将大量的生成深网(GDN)与样条运营商联系起来,以得出它们的属性,限制和新机会。通过表征生成的歧管的潜在空间分区,维度和角度,我们将歧管维度和近似误差与样本大小相关联。每个区域仿射子空间定义了局部坐标为基础;我们提供了将这些基础向量与分离的必要条件相关的条件。我们还根据潜在的空间密度来得出映射到生成的歧管上的输出概率密度,从而可以计算关键统计数据,例如其香农熵。这一发现还可以计算GDN可能性,该计算提供了一种新的机制来进行模型比较,并为学习分布下的(生成)样本提供了质量度量。我们证明了低熵和/或多模式分布不是由DGN自然建模的,并且是训练不稳定性的原因。
We connect a large class of Generative Deep Networks (GDNs) with spline operators in order to derive their properties, limitations, and new opportunities. By characterizing the latent space partition, dimension and angularity of the generated manifold, we relate the manifold dimension and approximation error to the sample size. The manifold-per-region affine subspace defines a local coordinate basis; we provide necessary and sufficient conditions relating those basis vectors with disentanglement. We also derive the output probability density mapped onto the generated manifold in terms of the latent space density, which enables the computation of key statistics such as its Shannon entropy. This finding also enables the computation of the GDN likelihood, which provides a new mechanism for model comparison as well as providing a quality measure for (generated) samples under the learned distribution. We demonstrate how low entropy and/or multimodal distributions are not naturally modeled by DGNs and are a cause of training instabilities.