论文标题

Causalml:用于因果机器学习的Python软件包

CausalML: Python Package for Causal Machine Learning

论文作者

Chen, Huigang, Harinen, Totte, Lee, Jeong-Yoon, Yung, Mike, Zhao, Zhenyu

论文摘要

Causalml是与因果推理和机器学习有关的算法实现的Python。近年来,结合因果推理和机器学习的算法一直是一个流行的话题。该软件包试图通过在Python中提供一系列方法来弥合方法论和实际应用的理论工作之间的差距。本文介绍了此软件包的关键概念,范围和用例。

CausalML is a Python implementation of algorithms related to causal inference and machine learning. Algorithms combining causal inference and machine learning have been a trending topic in recent years. This package tries to bridge the gap between theoretical work on methodology and practical applications by making a collection of methods in this field available in Python. This paper introduces the key concepts, scope, and use cases of this package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源