论文标题

抛物线层中的抛物线缩放:一种统计田间理论方法

Parabolic Scaling in Overdoped Cuprate: a Statistical Field Theory Approach

论文作者

Tao, Yong

论文摘要

最近,Bozovic等人。报道说[自然536,309-311(2016)],在单晶$ la_ {2-x} sr_xcuo_4 $(lsco)胶片中,过渡温度$ t_c $和零元素的超级流体相位僵硬$ρ_S(0) \sqrt{ρ_s(0)}$ for $T_c \leq T_Q$ and $T_c \propto ρ_s(0)$ for $T_c \geq T_M$, where $γ=(4.2 \pm 0.5) K^{1/2} $, $T_Q \approx 15 K$, and $T_M \approx 12 K$.他们进一步指出,在高度超过的侧观察到的抛物线缩放表明,量子相位从超导体到正常金属的量子相变。在本文中,我们为零温度库珀对提出了一个量子分区函数(QPF),通过该函数,可以有效地区分均值场和量子关键行为。从理论上讲,我们可以通过使用QPF来精确地得出两类规模定律,并且$γ$,$ t_q $和$ t_m $的理论值与实验度量值相符。我们的分析表明,线性缩放$ t_c \ proptoρ_s(0)$是平均场行为,而抛物线缩放$ t_c =γ\ cdot \ cdot \ sqrt {ρ_S(0)} $是量子关键行为。

Recently, Bozovic et al. reported that [Nature 536, 309-311 (2016)], in the overdoped side of the single-crystal $La_{2-x}Sr_xCuO_4$ (LSCO) films, the transition temperature $T_c$ and zero-temperature superfluid phase stiffness $ρ_s(0)$ will obey a two-class scaling law: $T_c=γ\cdot \sqrt{ρ_s(0)}$ for $T_c \leq T_Q$ and $T_c \propto ρ_s(0)$ for $T_c \geq T_M$, where $γ=(4.2 \pm 0.5) K^{1/2} $, $T_Q \approx 15 K$, and $T_M \approx 12 K$. They further pointed out that the parabolic scaling observed in the highly overdoped side indicates a quantum phase transition from a superconductor to a normal metal. In this paper, we propose a quantum partition function (QPF) for zero-temperature Cooper pairs, by which one can effectively distinguish between mean-field and quantum critical behaviors. We theoretically show that the two-class scaling law can be exactly derived by using the QPF, and the theoretical values of $γ$, $T_Q$, and $T_M$ are well in accordance with experimental measure values. Our analyses indicate that the linear scaling $T_c \propto ρ_s(0)$ is a mean-field behavior, while the parabolic scaling $T_c=γ\cdot \sqrt{ρ_s(0)}$ is a quantum critical behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源