论文标题
恒定组成代码的精制牢固的匡威
Refined Strong Converse for the Constant Composition Codes
论文作者
论文摘要
形式$ p_ {e}^{(n)} \ geq 1- a n^{ - 0.5(1- e_ {sc}'(r,w,w,p)} e^{ - n e_ {sc}(sc}(r,w,w,w,w,w,w,w,p)} $,使用Berry-sess $ a的概念,是由频道$ W $,组成$ p $和费率$ r $(即$ a $)确定的常数,不取决于块长度$ n $。
A strong converse bound for constant composition codes of the form $P_{e}^{(n)} \geq 1- A n^{-0.5(1-E_{sc}'(R,W,p))} e^{-n E_{sc}(R,W,p)}$ is established using the Berry-Esseen theorem through the concepts of Augustin information and Augustin mean, where $A$ is a constant determined by the channel $W$, the composition $p$, and the rate $R$, i.e., $A$ does not depend on the block length $n$.