论文标题
通过神经网络的公共项目机理设计
Mechanism Design for Public Projects via Neural Networks
论文作者
论文摘要
我们研究了不可判有和排除在外的二元公共项目问题的机制设计。我们的目标是最大程度地提高预期的消费者和预期的社会福利。对于不可限制的公共项目模型,我们确定了对保守性同等成本机制的先前分布的足够条件,使其成为最佳的策略且个人合理的机制。对于一般分布,我们提出了一个解决最佳机制的动态程序。对于排除的公共项目模型,我们确定了类似的足够条件,即以$ 2 $和3美元的代理商为$ 2 $和3美元的序列成本分配机制。我们得出数值上限。实验表明,对于几种共同的分布,串行成本共享机制接近最佳性。 一般来说,串行成本共享机制并不是最佳的。我们通过神经网络设计更好的性能机制。我们的方法涉及几项技术创新,这些创新总体上可以应用于机理设计。我们将这些机制解释为面向价格的无配给(PORF)机制,这使我们能够将机制的复杂(例如,迭代)从网络中制定出来,转移到一个单独的程序中。我们将先前的分布的分析形式馈送到成本函数中,以提供培训的优质梯度。我们将监督用于手动机制作为初始化的系统方法。我们的“监督和梯度下降”的方法可有效改善手动机制的性能。它也可以有效地修复基于启发式机制的约束违规行为,这些机制是不可行的。
We study mechanism design for nonexcludable and excludable binary public project problems. We aim to maximize the expected number of consumers and the expected social welfare. For the nonexcludable public project model, we identify a sufficient condition on the prior distribution for the conservative equal costs mechanism to be the optimal strategy-proof and individually rational mechanism. For general distributions, we propose a dynamic program that solves for the optimal mechanism. For the excludable public project model, we identify a similar sufficient condition for the serial cost sharing mechanism to be optimal for $2$ and $3$ agents. We derive a numerical upper bound. Experiments show that for several common distributions, the serial cost sharing mechanism is close to optimality. The serial cost sharing mechanism is not optimal in general. We design better performing mechanisms via neural networks. Our approach involves several technical innovations that can be applied to mechanism design in general. We interpret the mechanisms as price-oriented rationing-free (PORF) mechanisms, which enables us to move the mechanism's complex (e.g., iterative) decision making off the network, to a separate program. We feed the prior distribution's analytical form into the cost function to provide quality gradients for training. We use supervision to manual mechanisms as a systematic way for initialization. Our approach of "supervision and then gradient descent" is effective for improving manual mechanisms' performances. It is also effective for fixing constraint violations for heuristic-based mechanisms that are infeasible.