论文标题

深度学习和统计模型的时间关键行人行为预测

Deep Learning and Statistical Models for Time-Critical Pedestrian Behaviour Prediction

论文作者

Dabrowski, Joel Janek, de Villiers, Johan Pieter, Rahman, Ashfaqur, Beyers, Conrad

论文摘要

在许多行为识别问题中,进行准确预测所需的时间至关重要。例如,自动驾驶汽车应尽早发现有害行人行为,以便采取适当的措施。在这种情况下,我们比较开关线性动力学系统(SLDS)和三层双向长期记忆(LSTM)神经网络,这些神经网络可用于从运动轨迹中推断行人行为。我们表明,尽管神经网络模型的精度为80%,但需要长序列才能实现这一目标(100个样本或更多样本)。 SLDS的精度较低,为74%,但通过短序列(10个样本)实现了这一结果。据我们所知,以前的文献中没有考虑过这种序列长度的比较。结果提供了模型在关键问题问题上的适用性的关键直觉。

The time it takes for a classifier to make an accurate prediction can be crucial in many behaviour recognition problems. For example, an autonomous vehicle should detect hazardous pedestrian behaviour early enough for it to take appropriate measures. In this context, we compare the switching linear dynamical system (SLDS) and a three-layered bi-directional long short-term memory (LSTM) neural network, which are applied to infer pedestrian behaviour from motion tracks. We show that, though the neural network model achieves an accuracy of 80%, it requires long sequences to achieve this (100 samples or more). The SLDS, has a lower accuracy of 74%, but it achieves this result with short sequences (10 samples). To our knowledge, such a comparison on sequence length has not been considered in the literature before. The results provide a key intuition of the suitability of the models in time-critical problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源