论文标题

检测SE攻击中的问:语言和结构知识的影响

Detecting Asks in SE attacks: Impact of Linguistic and Structural Knowledge

论文作者

Dorr, Bonnie J., Bhatia, Archna, Dalton, Adam, Mather, Brodie, Hebenstreit, Bryanna, Santhanam, Sashank, Cheng, Zhuo, Shaikh, Samira, Zemel, Alan, Strzalkowski, Tomek

论文摘要

社会工程师试图操纵用户采取行动,例如通过单击链接或提供对金钱或敏感信息的访问来下载恶意软件。自然语言处理,计算社会语言学和媒体特定的结构线索提供了一种方法,可以检测问候(例如,购买礼品卡)和Ask所隐含的风险/奖励,我们称之为框架(例如,失去工作,要加薪)。我们将语言资源(例如词汇概念结构)进行处理,以应对询问检测,并利用结构线索,例如链接及其靠近所确定的要求,以提高对我们结果的信心。我们的实验表明,通过语言动机的类别以及诸如链接等结构线索,提高了问答检测,框架检测和对顶部询问的识别的性能。我们的方法是在通知用户社会工程风险情况下的系统中实施的。

Social engineers attempt to manipulate users into undertaking actions such as downloading malware by clicking links or providing access to money or sensitive information. Natural language processing, computational sociolinguistics, and media-specific structural clues provide a means for detecting both the ask (e.g., buy gift card) and the risk/reward implied by the ask, which we call framing (e.g., lose your job, get a raise). We apply linguistic resources such as Lexical Conceptual Structure to tackle ask detection and also leverage structural clues such as links and their proximity to identified asks to improve confidence in our results. Our experiments indicate that the performance of ask detection, framing detection, and identification of the top ask is improved by linguistically motivated classes coupled with structural clues such as links. Our approach is implemented in a system that informs users about social engineering risk situations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源