论文标题

与具有功能术语的奇异非线性方程相关的边界价值问题

Boundary value problems associated with singular strongly nonlinear equations with functional terms

论文作者

Biagi, Stefano, Calamai, Alessandro, Marcelli, Cristina, Papalini, Francesca

论文摘要

我们研究与奇异,非线性差分方程相关的边界价值问题,其功能性$$ \ big(φ(k(t)\,x'(t))\ big)\ f(t,t,\ nathcal {g} _x(t))这些方程式非常普遍,因为存在严格增加的同构$φ$,即所谓的$φ$ -laplacian操作员,其非负函数$ k $,该函数可能会在一组无效的措施中消失,此外,功能性术语$ \ nterm $ \ nathcal $ \ nathcal {g} _x _x _x _x _x $。我们从适当的弱意义上寻找解决方案,属于Sobolev空间$ W^{1,1}([a,b])$。在存在良好的上和下溶液以及合适的nagumo型生长条件的假设下,我们证明存在通过固定点参数所致。

We study boundary value problems associated with singular, strongly nonlinear differential equations with functional terms of type $$\big(Φ(k(t)\,x'(t))\big)' + f(t,\mathcal{G}_x(t))\,ρ(t, x'(t)) = 0$$ on a compact interval $[a,b]$. These equations are quite general due to the presence of a strictly increasing homeomorphism $Φ$, the so-called $Φ$-Laplacian operator, of a nonnegative function $k$, which may vanish on a set of null measure, and moreover of a functional term $\mathcal{G}_x$. We look for solutions, in a suitable weak sense, which belong to the Sobolev space $W^{1,1}([a,b])$. Under the assumptions of the existence of a well-ordered pair of upper and lower solutions and of a suitable Nagumo-type growth condition, we prove an existence result by means of fixed point arguments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源