论文标题

粒子轨道的亚循环中的粒子轨道轨道轨道的几何电磁颗粒方法

Subcycling of particle orbits in variational, geometric electromagnetic particle-in-cell methods

论文作者

Hirvijoki, Eero, Kormann, Katharina, Zonta, Filippo

论文摘要

本文调查了粒子轨道在磁化等离子体中解决vlasov-马克斯韦系统的变异的几何粒子方法中的亚度。亚度性的目的是为不同的粒子物种允许不同的时间步长,理想情况下,时间比电子陀螺仪更长的时间长,同时对局部回旋子轨道进行采样。所考虑的算法保留了离散作用的电磁量规不变性,保证了局部电荷保护定律,而变异方法则提供了有界的长期能量行为。

This paper investigates subcycling of particle orbits in variational, geometric particle-in-cell methods addressing the Vlasov--Maxwell system in magnetized plasmas. The purpose of subcycling is to allow different time steps for different particle species and, ideally, time steps longer than the electron gyroperiod for the global field solves while sampling the local cyclotron orbits accurately. The considered algorithms retain the electromagnetic gauge invariance of the discrete action, guaranteeing a local charge conservation law, while the variational approach provides a bounded long-time energy behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源