论文标题

概括Bès和Choffrut定理

Generalizing a theorem of Bès and Choffrut

论文作者

Walsberg, Erik

论文摘要

Bès和Choffrut最近表明,$(\ Mathbb {r},<,+)$和$(\ Mathbb {r},<,+,\ Mathbb {z})$之间没有中间结构。我们证明了一个概括:如果$ \ Mathcal {r} $是$(\ Mathbb {r},<,+)$的o-sinimal扩展,则是欧几里得空间的有界子集,那么$ \ \ \ \ \ \ m natercal {r} $ and $(\ nathcal and $ nathcal and $ nathcal {\ mathcal {r mathbb} $}它遵循$(\ mathbb {r},<,+,\ sin | _ {[0,2π]})$和$(\ Mathbb {r},<,+,\ sin)$之间的中间结构。

Bès and Choffrut recently showed that there are no intermediate structures between $(\mathbb{R},<,+)$ and $(\mathbb{R},<,+,\mathbb{Z})$. We prove a generalization: if $\mathcal{R}$ is an o-minimal expansion of $(\mathbb{R},<,+)$ by bounded subsets of Euclidean space then there are no intermediate structures between $\mathcal{R}$ and $(\mathcal{R},\mathbb{Z})$. It follows there are no intermediate structures between $(\mathbb{R},<,+,\sin|_{[0,2π]})$ and $(\mathbb{R},<,+,\sin)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源