论文标题
用可检验的假设估算经济模型:理论和应用
Estimating Economic Models with Testable Assumptions: Theory and Applications
论文作者
论文摘要
本文研究了具有可检验的假设的完整经济模型中的识别,估计和假设检验问题。可测试的假设($ a $)为模型提供了强大而可解释的经验内容,但它们也具有某些观察结果的分布可能拒绝这些假设的可能性。避免这种情况的一种自然方法是找到一组放松的假设($ \ tilde {a} $),这些假设无法因观察到的结果的任何分布而无法拒绝,并且当未拒绝原始假设时,感兴趣的参数已确定的集合不会更改。本文的主要贡献是表征这种放松的假设$ \ tilde {a} $的属性,该{a} $使用可比性和确认性的广义定义。我还提出了一种构建这种$ \ tilde {a} $的通用方法。提出了一般估计和推理程序,可以应用于大多数不完整的经济模型。我将我的方法应用于仪器单调性假设,以局部平均治疗效果(晚期)估计以及在二元结果ROY的就业领域选择模型中的扇区选择假设。在后期的应用程序中,我使用我的常规方法来构建一组放松的假设$ \ tilde {a} $,这些假设永远无法被拒绝,并且近来的确定集与当$ a $不拒绝时强加于$ a $。在我的扩展名$ \ tilde {a} $下,在晚期应用程序中确定了较晚的点。在二进制结果ROY模型中,我使用我的不完整模型的方法来放松Roy的扇区选择假设,并将确定的二进制电位结果表征为多面体。
This paper studies the identification, estimation, and hypothesis testing problem in complete and incomplete economic models with testable assumptions. Testable assumptions ($A$) give strong and interpretable empirical content to the models but they also carry the possibility that some distribution of observed outcomes may reject these assumptions. A natural way to avoid this is to find a set of relaxed assumptions ($\tilde{A}$) that cannot be rejected by any distribution of observed outcome and the identified set of the parameter of interest is not changed when the original assumption is not rejected. The main contribution of this paper is to characterize the properties of such a relaxed assumption $\tilde{A}$ using a generalized definition of refutability and confirmability. I also propose a general method to construct such $\tilde{A}$. A general estimation and inference procedure is proposed and can be applied to most incomplete economic models. I apply my methodology to the instrument monotonicity assumption in Local Average Treatment Effect (LATE) estimation and to the sector selection assumption in a binary outcome Roy model of employment sector choice. In the LATE application, I use my general method to construct a set of relaxed assumptions $\tilde{A}$ that can never be rejected, and the identified set of LATE is the same as imposing $A$ when $A$ is not rejected. LATE is point identified under my extension $\tilde{A}$ in the LATE application. In the binary outcome Roy model, I use my method of incomplete models to relax Roy's sector selection assumption and characterize the identified set of the binary potential outcome as a polyhedron.