论文标题

稳定性的确定性应变控制和手性磁铁中的天际运动的电流诱导的运动

Deterministic strain-control of stability and current-induced motion of skyrmions in chiral magnets

论文作者

Ong, Phuong-Vu, Kim, Tae-Hoon, Zhao, Haijun, Jensen, Brandt A., Zhou, Lin, Ke, Liqin

论文摘要

外部磁场,温度和自旋偏振电流通常用于创建和控制纳米级涡流状的旋转构型,例如磁空。尽管这些方法已被证明是成功的,但由于高功耗和耗散,它们并没有效率。磁性特性与机械变形之间的耦合,磁弹性(MEL)效应为纳米级的磁性控制提供了一种新型的方法。在电子和自旋设备的长度尺度的背景下,它引起了极大的兴趣。因此,希望建立一个能够预测机械应力的影响并实现磁纹理和天空的确定性控制的综合框架。在这项工作中,使用多尺度模拟和Lorentz传输电子显微镜测量的先进方案,我们证明了对薄膜和手学磁铁薄膜中拓扑磁纹理和天空创造的确定性控制。我们的调查不仅考虑了单轴性,而且考虑了双轴应力,这在薄膜设备中无处不在。当MEL系数和应变具有相同或相反的迹象时,双轴应力而不是单轴胁迫更有效地产生或歼灭了天际。这也被证明是稳定天空并控制其当前诱导的运动在赛道记忆中的可行方法。我们的结果开放了部署机械应力的前景,以创建新的拓扑旋转纹理,包括梅隆,以及基于天空的设备的控制和优化。

External magnetic field, temperature, and spin-polarized current are usually employed to create and control nanoscale vortex-like spin configurations such as magnetic skyrmions. Although these methods have proven successful, they are not energy-efficient due to high power consumption and dissipation. Coupling between magnetic properties and mechanical deformation, the magnetoelastic (MEL) effect, offers a novel approach to energy-efficient control of magnetism at the nanoscale. It is of great interest in the context of ever-decreasing length scales of electronic and spintronic devices. Therefore, it is desirable to establish a comprehensive framework capable of predicting the effects of mechanical stress and enabling deterministic control of magnetic textures and skyrmions. In this work, using an advanced scheme of multiscale simulations and Lorentz transmission electron microscopy measurements we demonstrate deterministic control of topological magnetic textures and skyrmion creation in thin films and racetracks of chiral magnets. Our investigation considers not only uniaxial but also biaxial stress, which is ubiquitous in thin-film devices. The biaxial stress, rather than the uniaxial one, was shown to be more efficient to create or annihilate skyrmions when the MEL coefficient and strain have the same or opposite signs, respectively. It was also demonstrated to be a viable way to stabilize skyrmions and to control their current-induced motion in racetrack memory. Our results open prospects for deployment of mechanical stress to create novel topological spin textures, including merons, and in control and optimization of skyrmion-based devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源