论文标题

最后一英里交付:多项式logit选择模型下的最佳储物柜位置

Last-mile Delivery: Optimal Locker Location Under Multinomial Logit Choice Model

论文作者

Lin, Yun Hui, He, Dongdong, Wang, Yuan, Lee, Loo Hay

论文摘要

最后一英里交付问题的一种创新解决方案是自助储物柜系统。在新加坡的真实情况下,我们考虑了一个流行洛克联盟(Pop-Locker Alliance),他经营一组流行站,并希望通过开设新的储物柜设施来改善最后一英里的交付。我们提出了一种定量方法来确定最佳储物柜位置,以最大程度地提高联盟提供的整体服务。明确考虑了客户在设施使用方面的选择。它们由多项式logit模型预测。然后,我们将位置问题提出为多比例线性折叠0-1程序,并提供两种解决方案方法。第一个是将原始问题重新制定为混合企业线性程序,该计划使用条件麦考密克的不平等进一步加强。这种方法是一种精确的方法,用于小规模问题。对于大规模的问题,我们提出了一个带有两种嵌入式算法的建议和突破框架。数值研究表明,我们的框架是一种产生高质量解决方案的有效方法。最后,我们进行了案例研究。结果强调了考虑客户选择的重要性。在多项式logit模型的不同参数值下,决策可能完全不同。因此,应提前仔细估算参数值。

One innovative solution to the last-mile delivery problem is the self-service locker system. Motivated by a real case in Singapore, we consider a POP-Locker Alliance who operates a set of POP-stations and wishes to improve the last-mile delivery by opening new locker facilities. We propose a quantitative approach to determine the optimal locker location with the objective to maximize the overall service provided by the alliance. Customer's choices regarding the use of facilities are explicitly considered. They are predicted by a multinomial logit model. We then formulate the location problem as a multi-ratio linear-fractional 0-1 program and provide two solution approaches. The first one is to reformulate the original problem as a mixed-integer linear program, which is further strengthened using conditional McCormick inequalities. This approach is an exact method, developed for small-scale problems. For large-scale problems, we propose a Suggest-and-Improve framework with two embedded algorithms. Numerical studies indicated that our framework is an efficient approach that yields high-quality solutions. Finally, we conducted a case study. The results highlighted the importance of considering the customers' choices. Under different parameter values of the multinomial logit model, the decisions could be completely different. Therefore, the parameter value should be carefully estimated in advance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源