论文标题
关于隐藏神经网络内的神经网络
On Hiding Neural Networks Inside Neural Networks
论文作者
论文摘要
现代神经网络通常比其训练数据的规模更大。我们表明,这种过多的容量为将秘密的机器学习模型嵌入受过训练的神经网络中提供了机会。我们的新框架隐藏了在载体网络中具有任意期望功能的秘密神经网络的存在。从理论上讲,我们证明了秘密网络的检测在计算上是不可行的,并从经验上证明了运营商网络不会损害秘密网络的伪装。我们的论文介绍了一种以前未知的隐志技术,如果未经检查,对手可以利用该技术。
Modern neural networks often contain significantly more parameters than the size of their training data. We show that this excess capacity provides an opportunity for embedding secret machine learning models within a trained neural network. Our novel framework hides the existence of a secret neural network with arbitrary desired functionality within a carrier network. We prove theoretically that the secret network's detection is computationally infeasible and demonstrate empirically that the carrier network does not compromise the secret network's disguise. Our paper introduces a previously unknown steganographic technique that can be exploited by adversaries if left unchecked.