论文标题

球形$ p $ - adic空间和伯恩斯坦形态的Paley-Wiener定理

A Paley-Wiener theorem for spherical $p$-adic spaces and Bernstein morphisms

论文作者

Din, Alexander Yom

论文摘要

让$ g $是(理性点)在本地非架构的$ f $上的连接还原组。在本文中,我们制定并证明了$ f $ spherical同质$ g $ -space的属性(此外,该属性还满足有限的多重属性,预计所有$ f $ f $ spherical jepherical同质$ g $ -spaces)我们称其为Paley-Wiener物业。与Delorme,Harinck和Sakellaridis的相关工作相比,这要多得多,但所包含的信息也要少得多(但是,它适用于更宽的空间)。该属性来自并行分类属性。我们还讨论了如何通过这种方法来定义伯恩斯坦的形态。

Let $G$ be (the rational points of) a connected reductive group over a local non-archimedean field $F$. In this article we formulate and prove a property of an $F$-spherical homogeneous $G$-space (which in addition satisfies the finite multiplicity property, which is expected to hold for all $F$-spherical homogeneous $G$-spaces) which we call the Paley-Wiener property. This is much more elementary, but also contains much less information, than the recent relevant work of Delorme, Harinck and Sakellaridis (however, it holds for a wider class of spaces). The property results from a parallel categorical property. We also discuss how to define Bernstein morphisms via this approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源