论文标题

有效的统计条纹去除算法,用于对超低原子的高敏性成像

Effective statistical fringe removal algorithm for high-sensitivity imaging of ultracold atoms

论文作者

Song, Bo, He, Chengdong, Ren, Zejian, Zhao, Entong, Lee, Jeongwon, Jo, Gyu-Boong

论文摘要

当将干扰模式印在成像光上时,超低原子的高敏性成像通常是具有挑战性的。这种图像噪声导致信噪比较低,并限制了提取细微的物理量的能力。在这里,我们演示了一种用于吸收超低原子成像的高级条纹去除算法,该算法使用少量的样本图像有效地抑制了不必要的条纹图案,而无需进行其他参考图像。该协议基于具有扩展图像基础的图像分解和投影方法。我们将此方案应用于退化费米气体的原始吸收图像,以测量原子密度波动和温度。定量分析表明,只有数十张参考图像可以有效地删除图像噪声,这表明了我们的协议效率。对于量子仿真实验,我们的算法特别感兴趣,其中需要在有限的时间持续时间内扫描几个物理参数。

High-sensitivity imaging of ultracold atoms is often challenging when interference patterns are imprinted on the imaging light. Such image noises result in low signal-to-noise ratio and limit the capability to extract subtle physical quantities. Here we demonstrate an advanced fringe removal algorithm for absorption imaging of ultracold atoms, which efficiently suppresses unwanted fringe patterns using a small number of sample images without taking additional reference images. The protocol is based on an image decomposition and projection method with an extended image basis. We apply this scheme to raw absorption images of degenerate Fermi gases for the measurement of atomic density fluctuations and temperatures. The quantitative analysis shows that image noises can be efficiently removed with only tens of reference images, which manifests the efficiency of our protocol. Our algorithm would be of particular interest for the quantum emulation experiments in which several physical parameters need to be scanned within a limited time duration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源