论文标题
通过深度加固学习有效肾脏肿瘤分割的自动数据增强
Automatic Data Augmentation via Deep Reinforcement Learning for Effective Kidney Tumor Segmentation
论文作者
论文摘要
通过执行简单的预处理操作(例如,旋转,农作物,\ etc)实现的常规数据增强,以提高医疗图像分割的性能,已得到验证。但是,这些常规增强方法生成的数据是随机的,有时对随后的分割有害。在本文中,我们开发了一种新型的基于自动学习的数据增强方法,用于医学图像分割,该方法使用深入强化学习(DRL)将增强任务建模为试验和错误程序。在我们的方法中,我们以端到端的培训方式创新地结合了数据增强模块和后续的分割模块,并持续损失。具体而言,通过直接在可用验证集上直接提高性能改进(\ ie,骰子比),可以自动学习不同基本操作的最佳顺序组合。我们对CT肾脏肿瘤分割的方法进行了广泛的评估,该方法验证了我们方法的有希望的结果。
Conventional data augmentation realized by performing simple pre-processing operations (\eg, rotation, crop, \etc) has been validated for its advantage in enhancing the performance for medical image segmentation. However, the data generated by these conventional augmentation methods are random and sometimes harmful to the subsequent segmentation. In this paper, we developed a novel automatic learning-based data augmentation method for medical image segmentation which models the augmentation task as a trial-and-error procedure using deep reinforcement learning (DRL). In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss. Specifically, the best sequential combination of different basic operations is automatically learned by directly maximizing the performance improvement (\ie, Dice ratio) on the available validation set. We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.