论文标题

原油价格预测的一种新的混合方法:多尺度数据的证据

A new hybrid approach for crude oil price forecasting: Evidence from multi-scale data

论文作者

Yifan, Yang, Ju'e, Guo, Shaolong, Sun, Yixin, Li

论文摘要

在加速互联网技术开发后,面对对原油价格波动的影响不断增长的影响因素,诸如Google搜索量指数之类的可访问数据被越来越量化,并将其纳入预测方法中。在本文中,我们应用了多尺度数据,其中包括GSVI数据和与原油价格有关的传统经济数据作为自变量,并提出了一种新的混合方法,以每月原油价格预测。这种混合方法基于鸿沟和征服策略,包括K-均值方法,内核主成分分析和内核极端学习机,其中采用K-Means方法将输入数据划分为某些群集,将KPCA应用于减少尺寸,并且KELM用于最终的原油价格预测。可以从数据和方法水平分析经验结果。在数据级别上,GSVI数据在预测准确性上的表现优于经济数据,但是由于群群的行为,在方向预测准确性方面具有相反的性能,而混合数据则结合了它们的优势,并在水平和方向准确性方面获得了最佳预测性能。在方法级别,使用K均值的方法比没有K-均值的方法更好,这表明分裂和征服策略可以有效地改善预测性能。

Faced with the growing research towards crude oil price fluctuations influential factors following the accelerated development of Internet technology, accessible data such as Google search volume index are increasingly quantified and incorporated into forecasting approaches. In this paper, we apply multi-scale data that including both GSVI data and traditional economic data related to crude oil price as independent variables and propose a new hybrid approach for monthly crude oil price forecasting. This hybrid approach, based on divide and conquer strategy, consists of K-means method, kernel principal component analysis and kernel extreme learning machine , where K-means method is adopted to divide input data into certain clusters, KPCA is applied to reduce dimension, and KELM is employed for final crude oil price forecasting. The empirical result can be analyzed from data and method levels. At the data level, GSVI data perform better than economic data in level forecasting accuracy but with opposite performance in directional forecasting accuracy because of Herd Behavior, while hybrid data combined their advantages and obtain best forecasting performance in both level and directional accuracy. At the method level, the approaches with K-means perform better than those without K-means, which demonstrates that divide and conquer strategy can effectively improve the forecasting performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源