论文标题

最小二乘问题的最佳随机一阶方法

Optimal Randomized First-Order Methods for Least-Squares Problems

论文作者

Lacotte, Jonathan, Pilanci, Mert

论文摘要

我们提供了一类随机算法来解决过度确定最小二乘问题的精确分析。我们考虑一阶方法,其中梯度是根据数据矩阵的子空间嵌入的Hessian的近似来预先调节的。这类算法在最快方面的问题中包含了最快的求解器中的几种随机方法。我们专注于两个经典的嵌入,即高斯投影和亚hadamard变换(SRHT)。我们的关键技术创新是SRHT嵌入的限制光谱密度的推导。利用这一新结果,我们得出了SRHT密度的归一化正交多项式的家族,并找到了最佳的预先调节的一阶方法以及其收敛速度。我们对高斯嵌入的分析也类似地进行,并利用经典的随机矩阵理论结果。特别是,我们表明,对于给定的草图大小,SRHT嵌入比高斯嵌入的收敛速度更快。然后,我们通过优化草图维度的选择来提出一种新算法。据我们所知,我们所产生的算法产生了最好的复杂性,用于解决最小二乘问题,而没有条件数依赖性。

We provide an exact analysis of a class of randomized algorithms for solving overdetermined least-squares problems. We consider first-order methods, where the gradients are pre-conditioned by an approximation of the Hessian, based on a subspace embedding of the data matrix. This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems. We focus on two classical embeddings, namely, Gaussian projections and subsampled randomized Hadamard transforms (SRHT). Our key technical innovation is the derivation of the limiting spectral density of SRHT embeddings. Leveraging this novel result, we derive the family of normalized orthogonal polynomials of the SRHT density and we find the optimal pre-conditioned first-order method along with its rate of convergence. Our analysis of Gaussian embeddings proceeds similarly, and leverages classical random matrix theory results. In particular, we show that for a given sketch size, SRHT embeddings exhibits a faster rate of convergence than Gaussian embeddings. Then, we propose a new algorithm by optimizing the computational complexity over the choice of the sketching dimension. To our knowledge, our resulting algorithm yields the best known complexity for solving least-squares problems with no condition number dependence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源