论文标题

凸几何超图中的紧密路径

Tight paths in convex geometric hypergraphs

论文作者

uredi, Zoltán F\", Jiang, Tao, Kostochka, Alexandr, Mubayi, Dhruv, Verstraëte, Jacques

论文摘要

在本文中,我们证明了在凸几何超图中的紧密路径上的定理,在无限的许多情况下,该定理在渐近上是渐近的。我们的几何定理是Hopf和Pannwitz [12],Sutherland [19],Kupitz和Perles [16]的常见概括,用于凸几何图,以及经典的ERDőS-GALLAI定理[6]。结果,我们在统一超图中的紧密路径上获得了Turán问题的第一个实质性改善。

In this paper, we prove a theorem on tight paths in convex geometric hypergraphs, which is asymptotically sharp in infinitely many cases. Our geometric theorem is a common generalization of early results of Hopf and Pannwitz [12], Sutherland [19], Kupitz and Perles [16] for convex geometric graphs, as well as the classical Erdős-Gallai Theorem [6] for graphs. As a consequence, we obtain the first substantial improvement on the Turán problem for tight paths in uniform hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源