论文标题
pleins-topogiques [d'AprèsMatui,Juschenko,Monod ...]
Groupes pleins-topologiques [d'après Matui, Juschenko, Monod...]
论文作者
论文摘要
这是2013年1月举行的布尔巴基研讨会的书面版本,并于2014年发布(Modulo随后添加了附加的早期参考文献)。它描述了第一个无限,有限生成的简单组的构造。它始于对拓扑结构组的一般研究,以及有关此类群体的首次出现的指示。然后证明了该定理,即,无限的最小次要换档的拓扑 - 满群的衍生亚组既简单又有限地产生(Matui 2006)和Amenabable(Juschenko-Monod 2013)(在Grigorchuk-Medynets猜测之后)。讨论了这些组的其他一些特性。自2013年以来,未提及随后的许多发展。
This is the written version of the Bourbaki seminar given in January 2013 and published in 2014 (modulo an additional early reference added subsequently). It describes the first construction of infinite, finitely generated amenable simple groups. It starts with a general study of topological-full groups, along with indications on the first appearances of such groups. Then the theorem is proved, namely that the derived subgroup of the topological-full group of an infinite minimal subshift is both simple and finitely generated (Matui 2006) and amenable (Juschenko-Monod 2013, after being conjectured by Grigorchuk-Medynets). Some other properties of these groups are discussed. None of the numerous subsequent developments since 2013 are mentioned.