论文标题

估计 - 行动反射:朝对话和推荐系统之间的深入相互作用

Estimation-Action-Reflection: Towards Deep Interaction Between Conversational and Recommender Systems

论文作者

Lei, Wenqiang, He, Xiangnan, Miao, Yisong, Wu, Qingyun, Hong, Richang, Kan, Min-Yen, Chua, Tat-Seng

论文摘要

推荐系统正在采用对话技术,以动态地获得用户偏好,并克服其静态模型的固有局限性。成功的会话推荐系统(CRS)需要正确处理对话和建议之间的互动。我们认为需要解决三个基本问题:1)有关项目属性的问题,2)何时推荐项目; 3)如何适应用户的在线反馈。据我们所知,缺乏解决这些问题的统一框架。 在这项工作中,我们通过提出一个名为“估算 - 反射反射”的新CRS框架来填补这个缺失的交互框架差距,该框架由三个阶段组成,可以更好地与用户交谈。 (1)估算,该估算构建了预测模型,以估计项目和项目属性的用户偏好; (2)根据估计阶段和对话历史记录,学习对话政策,以学习对话政策,以确定是否询问属性或推荐项目; (3)反思,当用户拒绝操作阶段提出的建议时,它会更新推荐模型。我们介绍了有关二进制和列举问题的两个对话方案,并分别在Yelp和LastFM的两个数据集上进行了大量实验。我们的实验表明,对最新方法CRM [32]的显着改善,对应于更少的对话转弯和更高水平的推荐命中率。

Recommender systems are embracing conversational technologies to obtain user preferences dynamically, and to overcome inherent limitations of their static models. A successful Conversational Recommender System (CRS) requires proper handling of interactions between conversation and recommendation. We argue that three fundamental problems need to be solved: 1) what questions to ask regarding item attributes, 2) when to recommend items, and 3) how to adapt to the users' online feedback. To the best of our knowledge, there lacks a unified framework that addresses these problems. In this work, we fill this missing interaction framework gap by proposing a new CRS framework named Estimation-Action-Reflection, or EAR, which consists of three stages to better converse with users. (1) Estimation, which builds predictive models to estimate user preference on both items and item attributes; (2) Action, which learns a dialogue policy to determine whether to ask attributes or recommend items, based on Estimation stage and conversation history; and (3) Reflection, which updates the recommender model when a user rejects the recommendations made by the Action stage. We present two conversation scenarios on binary and enumerated questions, and conduct extensive experiments on two datasets from Yelp and LastFM, for each scenario, respectively. Our experiments demonstrate significant improvements over the state-of-the-art method CRM [32], corresponding to fewer conversation turns and a higher level of recommendation hits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源