论文标题

基于风险的虚拟现实优化了Terahertz可重新配置的智能表面

Risk-Based Optimization of Virtual Reality over Terahertz Reconfigurable Intelligent Surfaces

论文作者

Chaccour, Christina, Soorki, Mehdi Naderi, Saad, Walid, Bennis, Mehdi, Popovski, Petar

论文摘要

在本文中,研究了无线VR网络将可重构智能表面(RISS)与虚拟现实(VR)用户相关联的问题。特别是,在采用Terahertz(THZ)操作的RISS充当基站的蜂窝网络中,考虑了此问题。为了提供无缝的VR体验,需要不断保证高数据速率和可靠的低潜伏期。为了应对这些挑战,提出了一个基于熵价值的基于风险的新型框架,以进行利率优化和可靠性绩效。此外,使用Lyapunov优化技术将问题重新制定为线性加权函数,同时确保队列长度的高阶统计数据保持在阈值下。为了解决这个问题,鉴于渠道的随机性,提出了一种基于政策的增强学习(RL)算法。由于状态空间非常大,因此通过深-RL算法学习了该政策。特别是,提出了一个经常性的神经网络(RNN)RL框架来捕获动态通道行为并提高常规RL策略搜索算法的速度。仿真结果表明,由提出的方法产生的最大队列长度仅在最佳解决方案的1%之内。结果显示RNN的准确性和快速收敛性,验证精度为91.92%。

In this paper, the problem of associating reconfigurable intelligent surfaces (RISs) to virtual reality (VR) users is studied for a wireless VR network. In particular, this problem is considered within a cellular network that employs terahertz (THz) operated RISs acting as base stations. To provide a seamless VR experience, high data rates and reliable low latency need to be continuously guaranteed. To address these challenges, a novel risk-based framework based on the entropic value-at-risk is proposed for rate optimization and reliability performance. Furthermore, a Lyapunov optimization technique is used to reformulate the problem as a linear weighted function, while ensuring that higher order statistics of the queue length are maintained under a threshold. To address this problem, given the stochastic nature of the channel, a policy-based reinforcement learning (RL) algorithm is proposed. Since the state space is extremely large, the policy is learned through a deep-RL algorithm. In particular, a recurrent neural network (RNN) RL framework is proposed to capture the dynamic channel behavior and improve the speed of conventional RL policy-search algorithms. Simulation results demonstrate that the maximal queue length resulting from the proposed approach is only within 1% of the optimal solution. The results show a high accuracy and fast convergence for the RNN with a validation accuracy of 91.92%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源