论文标题
在附近28个星形星系中的分子ISM中的动力平衡
Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-Forming Galaxies
论文作者
论文摘要
我们将观察到的分子气体中观察到的湍流压力($ p_ \ mathrm {turb} $)与星际气体保持平衡所需的压力,以在星系的重力中保持平衡,$ p_ \ mathrm {de} $。为此,我们将来自Phangs-Alma的Arcsecond CO数据与多波长数据结合了可追溯原子气,恒星结构和恒星形成速率(SFR)的多波长数据(SFR),可为附近的28个恒星形成星系。我们发现$ p_ \ mathrm {turb} $与Kiloparsec秤上的估计$ p_ \ mathrm {de} $相关。这表明分子气体相对于大规模环境而过度压力过度。我们表明,这种过度压力可以用分子气的块状性质来解释。云量表上的$ p_ \ mathrm {de} $的修订估计值是分子气体自我重力,外部重力和环境压力,与观察到的Galaxy磁盘中观察到的$ p_ \ mathrm {turb} $非常吻合。我们还发现,带有云规模$ {p_ \ mathrm {turb}}} \大约{p_ \ mathrm {de}} \ gtrsim {10^5 \,k_ \ mathrm {b} b} \,mathrm {k_ mathrm {k \,cm {k \,cm^3}}的分子气而在较低压力下的气体似乎受环境压力和/或外部重力的影响更大。此外,我们表明$ p_ \ mathrm {turb} $与观察到的SFR表面密度($σ_\ mathrm {sfr} $之间的比率)与大多数情况下的恒星反馈驱动的动量注入兼容,而在大多数情况下,在大多数情况下可能显示出其他由其他湍流驱动的区域的迹象。 Galaxy磁盘中$σ_\ Mathrm {Sfr} $与KPC-Scale $ P_ \ Mathrm {de} $之间的相关性与自调节恒星形成模型的期望一致。最后,我们确认了以前的作品中报告的分子与原子气体比与KPC-Scale $ p_ \ mathrm {de} $之间的经验相关性。
We compare the observed turbulent pressure in molecular gas, $P_\mathrm{turb}$, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, $P_\mathrm{DE}$. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multi-wavelength data that traces the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that $P_\mathrm{turb}$ correlates with, but almost always exceeds the estimated $P_\mathrm{DE}$ on kiloparsec scales. This indicates that the molecular gas is over-pressurized relative to the large-scale environment. We show that this over-pressurization can be explained by the clumpy nature of molecular gas; a revised estimate of $P_\mathrm{DE}$ on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed $P_\mathrm{turb}$ in galaxy disks. We also find that molecular gas with cloud-scale ${P_\mathrm{turb}}\approx{P_\mathrm{DE}}\gtrsim{10^5\,k_\mathrm{B}\,\mathrm{K\,cm^{-3}}}$ in our sample is more likely to be self-gravitating, whereas gas at lower pressure appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between $P_\mathrm{turb}$ and the observed SFR surface density, $Σ_\mathrm{SFR}$, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between $Σ_\mathrm{SFR}$ and kpc-scale $P_\mathrm{DE}$ in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale $P_\mathrm{DE}$ reported in previous works.