论文标题

在附近28个星形星系中的分子ISM中的动力平衡

Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-Forming Galaxies

论文作者

Sun, Jiayi, Leroy, Adam K., Ostriker, Eve C., Hughes, Annie, Rosolowsky, Erik, Schruba, Andreas, Schinnerer, Eva, Blanc, Guillermo A., Faesi, Christopher, Kruijssen, J. M. Diederik, Meidt, Sharon, Utomo, Dyas, Bigiel, Frank, Bolatto, Alberto D., Chevance, Mélanie, Chiang, I-Da, Dale, Daniel, Emsellem, Eric, Glover, Simon C. O., Grasha, Kathryn, Henshaw, Jonathan, Herrera, Cinthya N., Jimenez-Donaire, Maria Jesus, Lee, Janice C., Pety, Jérôme, Querejeta, Miguel, Saito, Toshiki, Sandstrom, Karin, Usero, Antonio

论文摘要

我们将观察到的分子气体中观察到的湍流压力($ p_ \ mathrm {turb} $)与星际气体保持平衡所需的压力,以在星系的重力中保持平衡,$ p_ \ mathrm {de} $。为此,我们将来自Phangs-Alma的Arcsecond CO数据与多波长数据结合了可追溯原子气,恒星结构和恒星形成速率(SFR)的多波长数据(SFR),可为附近的28个恒星形成星系。我们发现$ p_ \ mathrm {turb} $与Kiloparsec秤上的估计$ p_ \ mathrm {de} $相关。这表明分子气体相对于大规模环境而过度压力过度。我们表明,这种过度压力可以用分子气的块状性质来解释。云量表上的$ p_ \ mathrm {de} $的修订估计值是分子气体自我重力,外部重力和环境压力,与观察到的Galaxy磁盘中观察到的$ p_ \ mathrm {turb} $非常吻合。我们还发现,带有云规模$ {p_ \ mathrm {turb}}} \大约{p_ \ mathrm {de}} \ gtrsim {10^5 \,k_ \ mathrm {b} b} \,mathrm {k_ mathrm {k \,cm {k \,cm^3}}的分子气而在较低压力下的气体似乎受环境压力和/或外部重力的影响更大。此外,我们表明$ p_ \ mathrm {turb} $与观察到的SFR表面密度($σ_\ mathrm {sfr} $之间的比率)与大多数情况下的恒星反馈驱动的动量注入兼容,而在大多数情况下,在大多数情况下可能显示出其他由其他湍流驱动的区域的迹象。 Galaxy磁盘中$σ_\ Mathrm {Sfr} $与KPC-Scale $ P_ \ Mathrm {de} $之间的相关性与自调节恒星形成模型的期望一致。最后,我们确认了以前的作品中报告的分子与原子气体比与KPC-Scale $ p_ \ mathrm {de} $之间的经验相关性。

We compare the observed turbulent pressure in molecular gas, $P_\mathrm{turb}$, to the required pressure for the interstellar gas to stay in equilibrium in the gravitational potential of a galaxy, $P_\mathrm{DE}$. To do this, we combine arcsecond resolution CO data from PHANGS-ALMA with multi-wavelength data that traces the atomic gas, stellar structure, and star formation rate (SFR) for 28 nearby star-forming galaxies. We find that $P_\mathrm{turb}$ correlates with, but almost always exceeds the estimated $P_\mathrm{DE}$ on kiloparsec scales. This indicates that the molecular gas is over-pressurized relative to the large-scale environment. We show that this over-pressurization can be explained by the clumpy nature of molecular gas; a revised estimate of $P_\mathrm{DE}$ on cloud scales, which accounts for molecular gas self-gravity, external gravity, and ambient pressure, agrees well with the observed $P_\mathrm{turb}$ in galaxy disks. We also find that molecular gas with cloud-scale ${P_\mathrm{turb}}\approx{P_\mathrm{DE}}\gtrsim{10^5\,k_\mathrm{B}\,\mathrm{K\,cm^{-3}}}$ in our sample is more likely to be self-gravitating, whereas gas at lower pressure appears more influenced by ambient pressure and/or external gravity. Furthermore, we show that the ratio between $P_\mathrm{turb}$ and the observed SFR surface density, $Σ_\mathrm{SFR}$, is compatible with stellar feedback-driven momentum injection in most cases, while a subset of the regions may show evidence of turbulence driven by additional sources. The correlation between $Σ_\mathrm{SFR}$ and kpc-scale $P_\mathrm{DE}$ in galaxy disks is consistent with the expectation from self-regulated star formation models. Finally, we confirm the empirical correlation between molecular-to-atomic gas ratio and kpc-scale $P_\mathrm{DE}$ reported in previous works.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源