论文标题

在指定实体识别中应用预训练模型

Application of Pre-training Models in Named Entity Recognition

论文作者

Wang, Yu, Sun, Yining, Ma, Zuchang, Gao, Lisheng, Xu, Yang, Sun, Ting

论文摘要

命名实体识别(NER)是一项基本的自然语言处理(NLP)任务,可从非结构化数据中提取实体。以前的NER方法基于机器学习或深度学习。最近,培训模型在多个NLP任务上的性能显着提高。在本文中,首先,我们介绍了四种常见的预训练模型的建筑和预训练任务:Bert,Ernie,Ernie2.0-tiny和Roberta。然后,我们通过微调将这些预训练模型应用于NER任务,并比较不同模型体系结构和预训练任务对NER任务的影响。实验结果表明,罗伯塔(Roberta)在MSRA-2006数据集上取得了最新的结果。

Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task to extract entities from unstructured data. The previous methods for NER were based on machine learning or deep learning. Recently, pre-training models have significantly improved performance on multiple NLP tasks. In this paper, firstly, we introduce the architecture and pre-training tasks of four common pre-training models: BERT, ERNIE, ERNIE2.0-tiny, and RoBERTa. Then, we apply these pre-training models to a NER task by fine-tuning, and compare the effects of the different model architecture and pre-training tasks on the NER task. The experiment results showed that RoBERTa achieved state-of-the-art results on the MSRA-2006 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源