论文标题

尖锐的边界$ \ varepsilon $ - 最佳传输地图的频率

Sharp boundary $\varepsilon$-regularity of optimal transport maps

论文作者

Miura, Tatsuya, Otto, Felix

论文摘要

在本文中,我们开发了一个边界$ \ varepsilon $ -Regularity理论,用于使用$ c^{1,α} $ - 边界之间的有限开放集之间的最佳传输图。我们的主要结果断言尖锐的$ c^{1,α} $ - 在某些假设下以线性估算的形式在边界处的运输图的规律性:主要的定量假设是,局部的非量化运输成本很小,边界在$ c^{1,α} $中几乎是本地平坦的。我们的方法是完全变化的,并建立在最近开发的内部规律性理论的基础上。

In this paper we develop a boundary $\varepsilon$-regularity theory for optimal transport maps between bounded open sets with $C^{1,α}$-boundary. Our main result asserts sharp $C^{1,α}$-regularity of transport maps at the boundary in form of a linear estimate under certain assumptions: The main quantitative assumptions are that the local nondimensionalized transport cost is small and that the boundaries are locally almost flat in $C^{1,α}$. Our method is completely variational and builds on the recently developed interior regularity theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源