论文标题

对运动意图和反应时间的深入学习,用于恢复机器人的脑电图适应

Deep Learning of Movement Intent and Reaction Time for EEG-informed Adaptation of Rehabilitation Robots

论文作者

Kumar, Neelesh, Michmizos, Konstantinos P.

论文摘要

越来越多的证据表明,适应是促进运动学习中康复机器人的关键机制。但是,它通常基于机器人衍生的运动运动学,这是对性能的相当主观的测量,尤其是在有感觉障碍障碍的情况下。在这里,我们提出了一种深层卷积神经网络(CNN),该神经网络(CNN)使用脑电图(EEG)作为两个通常用于评估运动学习的运动学组件的客观测量,从而评估运动学习,从而进行适应:i)启动目标指导运动的意图,以及ii)该运动的反应时间(RT)。我们对从内部实验获得的数据评估了CNN,其中13名受试者响应视觉刺激,将13个受试者移动到平面上的四个方向上。我们的CNN在意图的二进制分类中(意图与无意图)和RT(慢速与快速)的二进制分类中达到了80.08%和79.82%的平均测试精度。我们的结果表明,如何通过在运动开始之前获得的同步脑电图数据来预测与不同类型的运动学习相关的个体运动组件。因此,我们的方法可以实时地为机器人改编提供信息,并有可能进一步提高人执行康复任务的能力。

Mounting evidence suggests that adaptation is a crucial mechanism for rehabilitation robots in promoting motor learning. Yet, it is commonly based on robot-derived movement kinematics, which is a rather subjective measurement of performance, especially in the presence of a sensorimotor impairment. Here, we propose a deep convolutional neural network (CNN) that uses electroencephalography (EEG) as an objective measurement of two kinematics components that are typically used to assess motor learning and thereby adaptation: i) the intent to initiate a goal-directed movement, and ii) the reaction time (RT) of that movement. We evaluated our CNN on data acquired from an in-house experiment where 13 subjects moved a rehabilitation robotic arm in four directions on a plane, in response to visual stimuli. Our CNN achieved average test accuracies of 80.08% and 79.82% in a binary classification of the intent (intent vs. no intent) and RT (slow vs. fast), respectively. Our results demonstrate how individual movement components implicated in distinct types of motor learning can be predicted from synchronized EEG data acquired before the start of the movement. Our approach can, therefore, inform robotic adaptation in real-time and has the potential to further improve one's ability to perform the rehabilitation task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源