论文标题

当放射学报告一代符合知识图时

When Radiology Report Generation Meets Knowledge Graph

论文作者

Zhang, Yixiao, Wang, Xiaosong, Xu, Ziyue, Yu, Qihang, Yuille, Alan, Xu, Daguang

论文摘要

自动放射学报告的一代一直是用于计算机辅助诊断的研究问题,以减轻近年来医生的工作量。自然图像字幕的深度学习技术已成功地适应生成放射学报告。然而,放射学图像报告与两个方面的自然图像字幕不同不同:1)与自然图像标题中每个单词的同等重要性相比,阳性疾病关键词的准确性在放射学图像报告中至关重要; 2)对报告质量的评估应更多地集中在与疾病关键字及其相关属性相匹配,而不是计算N-gram的发生。基于这些问题,我们建议利用多种疾病发现上的预构建图嵌入模块(用图卷积神经网络建模),以帮助这项工作中的报告产生。知识图的合并允许为每个疾病发现及其之间的关系建模提供专门的特征学习。此外,我们在同一组合图的帮助下提出了一个新的评估指标,以进行放射学图像报告。实验结果表明,与以前的方法相比,使用图像字幕通常采用的常规评估指标和我们提议的传统评估指标,与以前的方法相比,与以前的方法相比,胸部X光片的公开数据集(IU-RR)在公共访问数据集(IU-RR)上集成的方法的出色性能。

Automatic radiology report generation has been an attracting research problem towards computer-aided diagnosis to alleviate the workload of doctors in recent years. Deep learning techniques for natural image captioning are successfully adapted to generating radiology reports. However, radiology image reporting is different from the natural image captioning task in two aspects: 1) the accuracy of positive disease keyword mentions is critical in radiology image reporting in comparison to the equivalent importance of every single word in a natural image caption; 2) the evaluation of reporting quality should focus more on matching the disease keywords and their associated attributes instead of counting the occurrence of N-gram. Based on these concerns, we propose to utilize a pre-constructed graph embedding module (modeled with a graph convolutional neural network) on multiple disease findings to assist the generation of reports in this work. The incorporation of knowledge graph allows for dedicated feature learning for each disease finding and the relationship modeling between them. In addition, we proposed a new evaluation metric for radiology image reporting with the assistance of the same composed graph. Experimental results demonstrate the superior performance of the methods integrated with the proposed graph embedding module on a publicly accessible dataset (IU-RR) of chest radiographs compared with previous approaches using both the conventional evaluation metrics commonly adopted for image captioning and our proposed ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源