论文标题

$(t_ {2g})^4 $激光磁铁中的bcs-bec跨界

BCS-BEC crossover in a $(t_{2g})^4$ Excitonic Magnet

论文作者

Kaushal, Nitin, Soni, Rahul, Nocera, Alberto, Alvarez, Gonzalo, Dagotto, Elbio

论文摘要

$(t_ {2g})^4 $电子系统在$(t_ {2g})中的旋转式诱导的激子的凝结引起了极大的关注。在大型Hubbard U限制中,提出了抗fiferromagnetism,以从Triplons的Bose-Einstein凝结(BEC)中出现($ J _ {\ textrm {eff}} = 1 $)。在本出版物中,我们表明,即使对于弱和中间U机制,旋转轨道激子冷凝也可能导致交错磁顺序。规范的电子孔激发(激子)转变为大U处的局部三位三位激发,并且这种强大的耦合方案平稳地连接到了中间U的I激发型绝缘子区域。我们使用密度矩阵重新归一化组在一维几何形状中以自旋轨道耦合($λ$)求解了退化的三轨哈伯德模型,而在二维方形群集中,我们使用Hartree-Fock近似值(HFA)。使用这些技术,我们为一维晶格提供了完整的$λ$与U相图。我们的主要结果是,在我们重点的中间哈伯德U区域,固定的$λ$增加了系统从不一致的旋转密度 - 波金属到Bardeen-cooper-schrieffer(BCS)激子绝缘子的过渡,并以1D和2d的相干性R coh coh coh coh coh coh coh coh coh coh coh coh coh coh coh coh coh coh coh。该系统进一步增加了$λ$,最终越过BEC限制(使用R coh << a)。

The condensation of spin-orbit-induced excitons in $(t_{2g})^4$ electronic systems is attracting considerable attention. In the large Hubbard U limit, antiferromagnetism was proposed to emerge from the Bose-Einstein Condensation (BEC) of triplons ($J_{\textrm{eff}} = 1$). In this publication, we show that even for the weak and intermediate U regimes, the spin-orbit exciton condensation is possible leading also to staggered magnetic order. The canonical electron-hole excitations (excitons) transform into local triplon excitations at large U , and this BEC strong coupling regime is smoothly connected to the intermediate U excitonic insulator region. We solved the degenerate three-orbital Hubbard model with spin-orbit coupling ($λ$) in one-dimensional geometry using the Density Matrix Renormalization Group, while in two-dimensional square clusters we use the Hartree-Fock approximation (HFA). Employing these techniques, we provide the full $λ$ vs U phase diagrams for both one- and two- dimensional lattices. Our main result is that at the intermediate Hubbard U region of our focus, increasing $λ$ at fixed U the system transitions from an incommensurate spin-density-wave metal to a Bardeen-Cooper-Schrieffer (BCS) excitonic insulator, with coherence length r coh of O(a) and O(10a) in 1d and 2d, respectively, with a the lattice spacing. Further increasing $λ$, the system eventually crosses over to the BEC limit (with r coh << a).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源