论文标题
$ \ Mathcal {n} = 4 $ SYM在有限$ N_C $和背景独立性中的三点功能
Three-point Functions in $\mathcal{N}=4$ SYM at Finite $N_c$ and Background Independence
论文作者
论文摘要
我们使用受限的Schur字符的操作员基础,计算$ \ Mathcal {n} = 4 $ super yang-mills和有限$ n_c $中的标量运算符的非高级三分函数。我们利用称为Quiver cyculus的示意方法来简化三点函数。结果涉及广义RACAH-WIGNER张量的不变产品($ 6J $符号)。假设不变的产品是由利特伍德 - 里查森系数编写的,我们表明非超级三分函数满足了大型$ N_C $背景独立性; $ ads_5 \ times s^5 $上的字符串激发与LLM几何形状中的弦激兴趣之间的对应关系。
We compute non-extremal three-point functions of scalar operators in $\mathcal{N}=4$ super Yang-Mills at tree-level in $g_{YM}$ and at finite $N_c$, using the operator basis of the restricted Schur characters. We make use of the diagrammatic methods called quiver calculus to simplify the three-point functions. The results involve an invariant product of the generalized Racah-Wigner tensors ($6j$ symbols). Assuming that the invariant product is written by the Littlewood-Richardson coefficients, we show that the non-extremal three-point functions satisfy the large $N_c$ background independence; correspondence between the string excitations on $AdS_5 \times S^5$ and those in the LLM geometry.