论文标题

关于Sudler产品的数量级

On the order of magnitude of Sudler products

论文作者

Aistleitner, Christoph, Technau, Niclas, Zafeiropoulos, Agamemnon

论文摘要

给定一个不合理的数字$α\在(0,1)$中,Sudler产品由$ p_n(α)= \ prod_ {r = 1}^{n} 2 | \sinπrα| $定义。回答Grepstad,Kaltenböck和Neumüller的问题,当$α$是黄金比率$(\ sqrt {5} +1)/2 $时,我们证明了扭曲的Sudler产品的渐近公式,并确定在这种情况下,在这种情况下,$ \ limsup_ to $ \ limsup_ to \ to \ to \ f \ feftty $ nfty $ n <对于某些整数$ a \ geq 1 $,我们获得了二次非理性$α$的二次非理性$α$,并为某些整数$ a \ geq 1 $ $α= $α= $ a $ a $ a $ a $ \ liminf_ { p_n(α) / n <\ infty $保留。我们确定有一个(尖锐的)过渡点$ a = 6 $,并作为副产品解决了第一个命名作者,拉尔切尔,皮利希·史瑟,萨德·埃丁和蒂奇的问题。

Given an irrational number $α\in(0,1)$, the Sudler product is defined by $P_N(α) = \prod_{r=1}^{N}2|\sinπrα|$. Answering a question of Grepstad, Kaltenböck and Neumüller we prove an asymptotic formula for distorted Sudler products when $α$ is the golden ratio $(\sqrt{5}+1)/2$ and establish that in this case $\limsup_{N \to \infty} P_N(α)/N < \infty$. We obtain similar results for quadratic irrationals $α$ with continued fraction expansion $α= [a,a,a,\dots]$ for some integer $a \geq 1$, and give a full characterization of the values of $a$ for which $\liminf_{N \to \infty} P_N(α)>0$ and $\limsup_{N \to \infty} P_N(α) / N < \infty$ hold, respectively. We establish that there is a (sharp) transition point at $a=6$, and resolve as a by-product a problem of the first named author, Larcher, Pillichshammer, Saad Eddin, and Tichy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源