论文标题

用于旋转BousSinesQ流动的广义波涡流分解

A generalized wave-vortex decomposition for rotating Boussinesq flows with arbitrary stratification

论文作者

Early, Jeffrey J., Lelong, M. Pascale, Sundermeyer, Miles A.

论文摘要

在具有任意分层的旋转的非静态boussinesq模型中,线性波和地球(涡流)溶液被证明是物理变量$(U,V,W,ρ)$的完整基础。结果,可以在每次瞬间瞬间将流体明确分为线性波和地球成分,而无需时间过滤。然后,可以诊断出流体在每个独特的波数和模式下的波浪和地质系数的时间变化,包括由于非线性相互作用而不可避免地发生的流体。 我们证明,该方法可用于确定哪些物理相互作用通过将非线性运动方程投影到波浪涡流的基础上,从而导致模式之间的能量传递。在给出的特定示例中,我们表明,地面平衡中的涡流叠加在表面上的惯性振荡将能量从惯性振荡转移到内部重力波模式。可以更普遍地应用这种方法来确定哪些机制与波和涡流之间的能量传输有关,包括各自的尺度。 最后,我们表明,以波涡流表示的非线性运动方程在某些问题上是计算有效的。如果分层谱图随深度差异很大,则这种方法可能是旋转Boussinesq流的传统光谱模型的有吸引力的替代方法。

The linear wave and geostrophic (vortex) solutions are shown to be a complete basis for physical variables $(u,v,w,ρ)$ in a rotating non-hydrostatic Boussinesq model with arbitrary stratification. As a consequence, the fluid can be unambiguously separated into linear wave and geostrophic components at each instant in time, without the need for temporal filtering. The fluid can then be diagnosed for temporal changes in wave and geostrophic coefficients at each unique wavenumber and mode, including those that inevitably occur due to nonlinear interactions. We demonstrate that this methodology can be used to determine which physical interactions cause the transfer of energy between modes by projecting the nonlinear equations of motion onto the wave-vortex basis. In the particular example given, we show that an eddy in geostrophic balance superimposed with inertial oscillations at the surface transfers energy from the inertial oscillations to internal gravity wave modes. This approach can be applied more generally to determine which mechanisms are involved in energy transfers between wave and vortices, including their respective scales. Finally, we show that the nonlinear equations of motion expressed in a wave-vortex basis are computationally efficient for certain problems. In cases where stratification profiles vary strongly with depth, this approach may be an attractive alternative to traditional spectral models for rotating Boussinesq flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源