论文标题

自我注意力盗窃检测

Electricity Theft Detection with self-attention

论文作者

Finardi, Paulo, Campiotti, Israel, Plensack, Gustavo, de Souza, Rafael Derradi, Nogueira, Rodrigo, Pinheiro, Gustavo, Lotufo, Roberto

论文摘要

在这项工作中,我们提出了一个新型的自我注意机制模型,以解决不平衡现实数据集中的电力盗窃检测,该数据集呈现出中国州立电网公司提供的每日电力消耗。我们的关键贡献是引入了与扩张卷积相连的多头自我发项机制,并由内核尺寸$ 1 $统一的统一。此外,我们引入了一个二进制输入通道(二进制掩码),以识别缺失值的位置,从而使网络可以学习如何处理这些值。我们的模型达到了0.926美元的AUC,相对于以前的基准工作,它的提高超过$ 17 \%。该代码可在https://github.com/neuralmind-ai/electricity-theft-detection-with-self-oneverention上在GitHub上获得。

In this work we propose a novel self-attention mechanism model to address electricity theft detection on an imbalanced realistic dataset that presents a daily electricity consumption provided by State Grid Corporation of China. Our key contribution is the introduction of a multi-head self-attention mechanism concatenated with dilated convolutions and unified by a convolution of kernel size $1$. Moreover, we introduce a binary input channel (Binary Mask) to identify the position of the missing values, allowing the network to learn how to deal with these values. Our model achieves an AUC of $0.926$ which is an improvement in more than $17\%$ with respect to previous baseline work. The code is available on GitHub at https://github.com/neuralmind-ai/electricity-theft-detection-with-self-attention.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源