论文标题

在任意发展的域上的反应扩散和反应 - 扩散方程

Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains

论文作者

Abad, E., Angstmann, C. N., Henry, B. I., McGann, A. V., Vot, F. Le, Yuste, S. B.

论文摘要

反应扩散方程被广泛用作建模许多物理,化学和生物学过程的管理进化方程。在这里,我们得出反应扩散方程,以模拟传输,并在正在发展的一维域上进行反应。该模型方程是从广义连续时间随机步行中得出的,可以结合复杂性,例如延伸运输和不均匀的域拉伸和收缩。开发了一种在短时间内构建分析表达式的方法,从这种方法中计算出的矩与随机行走模拟的结果和反应转运方程的数值整合的结果相比,可以很好地比较。结果表明,初始条件起着重要的作用。特别是,它通过引入额外的漂移和扩散项来强烈影响短时间矩的时间依赖性。我们还讨论了如何应用反应传输方程来研究人群在不断发展的界面上的扩散。

Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源