论文标题

Sachdev-ye-Kitaev模型中的多体混乱

Many-Body Chaos in the Sachdev-Ye-Kitaev Model

论文作者

Kobrin, Bryce, Yang, Zhenbin, Kahanamoku-Meyer, Gregory D., Olund, Christopher T., Moore, Joel E., Stanford, Douglas, Yao, Norman Y.

论文摘要

多体混乱已成为理解强烈相互作用量子系统中热化的强大框架。尽管最近在某些大型$ n $理论中,最近的分析进步使我们对多体混乱的直觉变得更加直觉,但事实证明,开发能够在通用的哈密顿人中探索这种现象的精确数值工具的挑战。为此,我们利用大量平行的无基质Krylov子空间方法来计算Sachdev-Ye-Kitaev(Syk)模型中的动态相关器,最高为$ n = 60 $ n = 60 $ majoraga。首先,我们表明两点相关函数的数值结果在高温下与动态平均溶液一致,而在低温下,有限大小的校正是通过近极黑色孔的确切可解决的动力学定量复制的。在这些结果的推动下,我们开发了一种新颖的有限尺寸重新确定程序,用于分析超阶相关器(OTOC)的生长。我们验证该过程准确地确定了lyapunov指数$λ$在温度范围内,包括在$λ$接近通用结合的状态下,$λ=2π/β$。

Many-body chaos has emerged as a powerful framework for understanding thermalization in strongly interacting quantum systems. While recent analytic advances have sharpened our intuition for many-body chaos in certain large $N$ theories, it has proven challenging to develop precise numerical tools capable of exploring this phenomenon in generic Hamiltonians. To this end, we utilize massively parallel, matrix-free Krylov subspace methods to calculate dynamical correlators in the Sachdev-Ye-Kitaev (SYK) model for up to $N = 60$ Majorana fermions. We begin by showing that numerical results for two-point correlation functions agree at high temperatures with dynamical mean field solutions, while at low temperatures finite-size corrections are quantitatively reproduced by the exactly solvable dynamics of near extremal black holes. Motivated by these results, we develop a novel finite-size rescaling procedure for analyzing the growth of out-of-time-order correlators (OTOCs). We verify that this procedure accurately determines the Lyapunov exponent, $λ$, across a wide range in temperatures, including in the regime where $λ$ approaches the universal bound, $λ= 2π/β$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源