论文标题

分数量子厅液体中通用几何响应的显微镜诊断

Microscopic Diagnosis of Universal Geometric Responses in Fractional Quantum Hall Liquids

论文作者

Hu, Liangdong, Liu, Zhao, Sheng, D. N., Haldane, F. D. M., Zhu, W.

论文摘要

拓扑量子液体包含内部自由度,并与几何响应耦合。然而,几何反应的明确和显微镜识别仍然很困难。在这里,以明显的分数量子厅(FQH)为典型的例子,我们系统地研究了有前途的方案 - 圆环几何形状上的Dehn Twist变形,以探测相关拓扑状态的几何响应,并建立此类响应与相关状态的普遍特性之间的关系。基于分析推导和数值模拟,我们发现几何诱导的浆果相编码了Laughlin,层次结构,Halperin和非亚伯利亚摩尔阅读填充物的一系列FQH状态的新颖特征。我们的发现最终表明,绝热的Dehn Twist变形可以忠实地捕获基本FQH液滴的几何形状和固有的模块化信息,包括拓扑旋转和手性中心电荷。我们的方法提供了一种强大的方式来揭示通用FQH国家的拓扑顺序,并允许我们解决以前的开放问题。

Topological quantum liquids contain internal degrees of freedom that are coupled to geometric response. Yet, an explicit and microscopic identification of geometric response remains difficult. Here, taking notable fractional quantum Hall (FQH) states as typical examples, we systematically investigate a promising protocol -- the Dehn twist deformation on the torus geometry, to probe the geometric response of correlated topological states and establish the relation between such response and the universal properties of pertinent states. Based on analytical derivations and numerical simulations, we find that the geometry-induced Berry phase encodes novel features for a broad class of FQH states at the Laughlin, hierarchy, Halperin and non-Abelian Moore-Read fillings. Our findings conclusively demonstrate that the adiabatic Dehn twist deformation can faithfully capture the geometry of elementary FQH droplets and intrinsic modular information including topological spin and chiral central charge. Our approach provides a powerful way to reveal topological orders of generic FQH states and allows us to address previously open questions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源