论文标题

贝叶斯的对话推荐系统的方法

A Bayesian Approach to Conversational Recommendation Systems

论文作者

Mangili, Francesca, Broggini, Denis, Antonucci, Alessandro, Alberti, Marco, Cimasoni, Lorenzo

论文摘要

我们提出了一种基于贝叶斯方法的会话推荐系统。与用户进行任何互动后,对项目的概率质量函数进行更新,并具有最佳的信息理论标准,可最佳地塑造交互并确定何时应终止对话,并建议使用最可能的项目。建模相互作用的参数的先前概率的专用启发技术来自基本的结构判断。这些先前的信息可​​以与历史数据结合使用,以区分具有不同建议历史的项目。最终讨论了基于这种方法的在线平台\ emph {stagend.com}的案例研究,最终与经验分析进行了讨论,以表明建议质量和效率方面有优势。

We present a conversational recommendation system based on a Bayesian approach. A probability mass function over the items is updated after any interaction with the user, with information-theoretic criteria optimally shaping the interaction and deciding when the conversation should be terminated and the most probable item consequently recommended. Dedicated elicitation techniques for the prior probabilities of the parameters modeling the interactions are derived from basic structural judgements. Such prior information can be combined with historical data to discriminate items with different recommendation histories. A case study based on the application of this approach to \emph{stagend.com}, an online platform for booking entertainers, is finally discussed together with an empirical analysis showing the advantages in terms of recommendation quality and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源