论文标题
经济增长模型中的分叉,分布式时间延迟转变为ODE
Bifurcations in economic growth model with distributed time delay transformed to ODE
论文作者
论文摘要
我们考虑随着时间推移的投资功能的经济增长模型。假设投资是分布式的投资,我们可以使用线性链技巧技术将延迟微分方程系统转换为普通微分系统(ODE)的等效系统。时间延迟参数是伽马分布的平均时间延迟。我们将分布延迟的系统降低到三维和四维odes。我们研究了这些系统中有关两个参数的HOPF分叉:时间延迟参数和生长参数速率。我们从分析和数值研究中得出结果。从前者那里,我们获得了通过HOPF分叉的极限周期解决方案的存在和稳定性的足够标准。在使用DANA和MALGRANGE投资函数的数值研究中,我们发现了有关速率增长参数的两个HOPF分叉,并检测到经济中稳定的长期周期的存在。我们发现,取决于时间延迟和调整速度参数,生长参数速率可接受的值范围分为三个间隔。首先,我们具有稳定的焦点,然后是极限周期,并再次使用两个HOPF分叉的稳定解决方案。这种行为在某种程度上出现了可允许的生长参数速率值范围的中间间隔。
We consider the model of economic growth with time delayed investment function. Assuming the investment is time distributed we can use the linear chain trick technique to transform delay differential equation system to equivalent system of ordinary differential system (ODE). The time delay parameter is a mean time delay of gamma distribution. We reduce the system with distribution delay to both three and four-dimensional ODEs. We study the Hopf bifurcation in these systems with respect to two parameters: the time delay parameter and the rate of growth parameter. We derive the results from the analytical as well as numerical investigations. From the former we obtain the sufficient criteria on the existence and stability of a limit cycle solution through the Hopf bifurcation. In numerical studies with the Dana and Malgrange investment function we found two Hopf bifurcations with respect to the rate growth parameter and detect the existence of stable long-period cycles in the economy. We find that depending on the time delay and adjustment speed parameters the range of admissible values of the rate of growth parameter breaks down into three intervals. First we have stable focus, then the limit cycle and again the stable solution with two Hopf bifurcations. Such behaviour appears for some middle interval of admissible range of values of the rate of growth parameter.