论文标题
动态可重新配置的离散分布式刚度膨胀的梁机器人
Dynamically Reconfigurable Discrete Distributed Stiffness for Inflated Beam Robots
论文作者
论文摘要
膨胀的连续机器人有望完成各种导航任务,但是用少数执行器控制其运动是具有挑战性的。这些充气的梁机器人倾向于在压缩载荷下扣紧,在难以控制的扣子位置产生极度紧的局部曲率。在本文中,我们提出了一个充气的梁机器人,该机器人使用通过正压层堵塞来控制或防止屈曲的分布式刚度变化部分。被动阀由电动机械装置携带的电磁体驱动,该机电设备在主膨胀的梁机器人体内行进。阀本本身不需要外部连接或接线,从而可以将分布式刚度控制缩放到长光束长度。多层堵塞元件同时加强以实现全局僵硬,从而使机器人能够支撑更大的悬臂载荷和更长的不支持的长度。局部僵硬,通过使某些层的干扰元件未经固定而实现,使机器人能够产生动态改变机器人运动学的“虚拟关节”。实施这些僵硬的策略与通过尖端和肌腱发挥作用与生长兼容,并为膨胀的梁机器人和倾斜的机器人提供了许多新功能。
Inflated continuum robots are promising for a variety of navigation tasks, but controlling their motion with a small number of actuators is challenging. These inflated beam robots tend to buckle under compressive loads, producing extremely tight local curvature at difficult-to-control buckle point locations. In this paper, we present an inflated beam robot that uses distributed stiffness changing sections enabled by positive pressure layer jamming to control or prevent buckling. Passive valves are actuated by an electromagnet carried by an electromechanical device that travels inside the main inflated beam robot body. The valves themselves require no external connections or wiring, allowing the distributed stiffness control to be scaled to long beam lengths. Multiple layer jamming elements are stiffened simultaneously to achieve global stiffening, allowing the robot to support greater cantilevered loads and longer unsupported lengths. Local stiffening, achieved by leaving certain layer jamming elements unstiffened, allows the robot to produce "virtual joints" that dynamically change the robot kinematics. Implementing these stiffening strategies is compatible with growth through tip eversion and tendon-steering, and enables a number of new capabilities for inflated beam robots and tip-everting robots.