论文标题

用二进制数据对双簇的双向优化

Bi-objective Optimization of Biclustering with Binary Data

论文作者

Glover, Fred, Hanafi, Said, Palubeckis, Gintaras

论文摘要

聚类包括根据某些相似性标准将数据对象划分为称为群集的子集。本文介绍了一个称为准群集的概括,该概述允许群集重叠,我们将其链接到双簇。同时进行双簇分组对象和功能,以使特定的对象组具有特殊的特征组。近年来,在几种实际应用中,双群落引起了很多关注。在本文中,我们考虑了对二进制数据的双簇问题的双向优化。首先,我们提出了一个整数编程公式,用于双向优化双簇。接下来,我们提出了一种基于集合交点操作的建设性启发式,其有效的实现用于求解Epsilon-Constraint方法中使用的一系列单一目标问题(通过仅保留一个目标函数和另一个目标函数将其集成到约束中)。最后,我们的实验结果表明,使用CPLEX求解器作为确切的算法来找到最佳解决方案,大大提高了大型实例的计算成本,而我们提出的启发式方法可提供良好的结果并大大降低了计算费用。

Clustering consists of partitioning data objects into subsets called clusters according to some similarity criteria. This paper addresses a generalization called quasi-clustering that allows overlapping of clusters, and which we link to biclustering. Biclustering simultaneously groups the objects and features so that a specific group of objects has a special group of features. In recent years, biclustering has received a lot of attention in several practical applications. In this paper we consider a bi-objective optimization of biclustering problem with binary data. First we present an integer programing formulations for the bi-objective optimization biclustering. Next we propose a constructive heuristic based on the set intersection operation and its efficient implementation for solving a series of mono-objective problems used inside the Epsilon-constraint method (obtained by keeping only one objective function and the other objective function is integrated into constraints). Finally, our experimental results show that using CPLEX solver as an exact algorithm for finding an optimal solution drastically increases the computational cost for large instances, while our proposed heuristic provides very good results and significantly reduces the computational expense.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源