论文标题
对快速的设备应用程序的内存较低的成对神经网络(PAIRNET)
Pairwise Neural Networks (PairNets) with Low Memory for Fast On-Device Applications
论文作者
论文摘要
传统的人工神经网络(ANN)通常通过梯度下降算法(例如反向传播算法)缓慢训练,因为大量ANN的超参数需要通过许多训练时代进行微调。由于诸如卷积神经网络之类的深神经网络的大量超参数,占据了许多内存,因此内存的深度学习模型对于各种设备(例如手机)上的实时物联网(IoT)应用程序(IoT)应用程序并不是理想的选择。因此,有必要开发快速和记忆有效的事物(AIOT)系统的人工智能,以实时实时应用程序。我们创建了一个新型宽且浅的4层ANN,称为“成对神经网络”(“ Pairnet”),具有高速非梯度降级超参数优化。该配对仅用一个时代迅速训练,因为其超参数可以通过使用多元最小二乘拟合方法直接求解线性方程系统来直接优化。此外,将N输入空间分区为许多N输入数据子空间,并在本地N输入子空间中构建本地PairNet。这种划分和争议的方法可以使用特定的本地功能来训练本地Pairnet,以提高模型性能。仿真结果表明,具有增量学习的三个配板的平均预测平方误差较小,并且比传统ANN的速度更高。一项重要的未来工作是开发更好,更快的非毕业生高参数优化算法,以生成有效,快速和记忆效率的配对网,并在实时Aiot Aiot evice应用程序上使用最佳子空间进行增量学习。
A traditional artificial neural network (ANN) is normally trained slowly by a gradient descent algorithm, such as the backpropagation algorithm, since a large number of hyperparameters of the ANN need to be fine-tuned with many training epochs. Since a large number of hyperparameters of a deep neural network, such as a convolutional neural network, occupy much memory, a memory-inefficient deep learning model is not ideal for real-time Internet of Things (IoT) applications on various devices, such as mobile phones. Thus, it is necessary to develop fast and memory-efficient Artificial Intelligence of Things (AIoT) systems for real-time on-device applications. We created a novel wide and shallow 4-layer ANN called "Pairwise Neural Network" ("PairNet") with high-speed non-gradient-descent hyperparameter optimization. The PairNet is trained quickly with only one epoch since its hyperparameters are directly optimized one-time via simply solving a system of linear equations by using the multivariate least squares fitting method. In addition, an n-input space is partitioned into many n-input data subspaces, and a local PairNet is built in a local n-input subspace. This divide-and-conquer approach can train the local PairNet using specific local features to improve model performance. Simulation results indicate that the three PairNets with incremental learning have smaller average prediction mean squared errors, and achieve much higher speeds than traditional ANNs. An important future work is to develop better and faster non-gradient-descent hyperparameter optimization algorithms to generate effective, fast, and memory-efficient PairNets with incremental learning on optimal subspaces for real-time AIoT on-device applications.