论文标题
张开的XXZ旋转链中的完整计数统计数据
Full counting statistics in the gapped XXZ spin chain
论文作者
论文摘要
我们利用侧面XXZ自旋链基底状态的纠缠谱的知识,以在长度的自旋块中得出横向磁化的完整计数统计量的渐近性确切结果。我们发现,对于偶数长度的子系统,完整的计数统计数据是高斯,而对于奇数子系统,这是两个高斯分布的总和。我们通过准确的张量网络模拟测试分析预测。作为副产品,我们还获得了对称(磁化)解决的纠缠熵。
We exploit the knowledge of the entanglement spectrum in the ground state of the gapped XXZ spin chain to derive asymptotic exact results for the full counting statistics of the transverse magnetisation in a spin block of length. We found that for a subsystem of even length the full counting statistics is Gaussian, while for odd subsystems it is the sum of two Gaussian distributions. We test our analytic predictions with accurate tensor networks simulations. As a byproduct, we also obtain the symmetry (magnetisation) resolved entanglement entropies.