论文标题

与整数有关和不具有谓词的真实添加理论

Theories of real addition with and without a predicate for integers

论文作者

Bès, Alexis, Choffrut, Christian

论文摘要

我们表明,是否可以在结构$ \ langle \ mathbb {r}, +,<,<,\ mathbb {z} \ rangle $中定义的结构中定义的真实关系是可以决定的。通过获得$ \ langle \ mathbb {r}, +,<,<,1 \ rangle $ - 可定义的关系来实现这一结果,从而实现了这一结果。以$ \ langle \ mathbb {r}, +,<,1,x \ rangle $的逻辑表示。 上面的表征使我们能够证明$ \ langle \ mathbb {r}, +,<,\ mathbb {z} \ rangle $和$ \ langle \ langle \ mathbb {r}, +, +,<,<,<,1 \ rangle $之间没有中间结构。我们还表明,一个$ \ langle \ mathbb {r}, +,<,<,\ mathbb {z} \ rangle $ -definable Relation是$ \ langle \ langle \ langle \ mathbb {r}, +, +,<,<,<,1 \ rangle $ -definable可在每一个$ \ langle +rangle +rangle +nthers中, \ rangle $ -definable Line是$ \ langle \ mathbb {r}, +,<,1 \ rangle $ -definable。这给出了$ \ langle \ mathbb {r}, +,<,<,1 \ rangle $ - 可定义关系的简单表征。

We show that it is decidable whether or not a relation on the reals definable in the structure $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ can be defined in the structure $\langle \mathbb{R}, +,<, 1 \rangle$. This result is achieved by obtaining a topological characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations in the family of $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relations and then by following Muchnik's approach of showing that the characterization of the relation $X$ can be expressed in the logic of $\langle \mathbb{R}, +,<,1, X \rangle$. The above characterization allows us to prove that there is no intermediate structure between $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$ and $\langle \mathbb{R}, +,<, 1 \rangle$. We also show that a $\langle \mathbb{R}, +,<, \mathbb{Z} \rangle$-definable relation is $\langle \mathbb{R}, +,<, 1 \rangle$-definable if and only if its intersection with every $\langle \mathbb{R}, +,<, 1 \rangle$-definable line is $\langle \mathbb{R}, +,<, 1 \rangle$-definable. This gives a noneffective but simple characterization of $\langle \mathbb{R}, +,<, 1 \rangle$-definable relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源