论文标题

$ \ text {psl} _2(q)$的同谋

Cohomology of $\text{PSL}_2(q)$

论文作者

Saunders, Jack

论文摘要

在2011年,Guralnick和Tiep证明,如果$ g $是一个带有borel子组$ b $的雪佛兰集团,而$ v $ a nordreducible $ g $ -mmodule具有交叉特征,则$ v^b = 0 $,则$ h^1(g,v)$的尺寸由$ b $ b $ b $ b $ osets ocets ocets ocets ocets ocets ocets ocets ocets ocets ocets ocets ocets of b $ b $ b $ b $。 We generalise this theorem to higher cohomology and an arbitrary finite group, so that if $H \leq G$ such that $O_{r'}(H) = O^r(H)$ and $V^H = 0$ for $V$ a $G$-module in characteristic $r$ then $\dim H^1(G,V)$ is determined by the structure of the permutation module on cosets of $H$, and $ h^n(g,v)$ by $ \ text {ext} _g^{n-1}(n-1}(v^*,m)$,依赖于$ h $的$ kg $ -module $ m $。我们还确定$ \ text {ext} _g^n(v,w)$ for $ $ kg $ -modules $ v $,$ w $ for $ g \ in \ in \ in \ {\ text {psl} _2 _2 _2(q),\ text {pgl} _2(q)

In 2011, Guralnick and Tiep proved that if $G$ was a Chevalley group with Borel subgroup $B$ and $V$ an irreducible $G$-module in cross characteristic with $V^B = 0$, then the the dimension of $H^1(G,V)$ is determined by the structure of the permutation module on the cosets of $B$. We generalise this theorem to higher cohomology and an arbitrary finite group, so that if $H \leq G$ such that $O_{r'}(H) = O^r(H)$ and $V^H = 0$ for $V$ a $G$-module in characteristic $r$ then $\dim H^1(G,V)$ is determined by the structure of the permutation module on cosets of $H$, and $H^n(G,V)$ by $\text{Ext}_G^{n-1}(V^*,M)$ for some $kG$-module $M$ dependent on $H$. We also determine $\text{Ext}_G^n(V,W)$ for all irreducible $kG$-modules $V$, $W$ for $G \in \{\text{PSL}_2(q), \text{PGL}_2(q), \text{SL}_2(q)\}$ in cross characteristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源