论文标题
核心水平光谱镜的时间依赖性散射方法
A time-dependent scattering approach to core-level spectroscopies
论文作者
论文摘要
尽管新的光源允许在X射线实验中实现前所未有的分辨率,但缺乏对散射横截面的理论理解。在特殊相关的电子系统的特定情况下,数值技术非常有限,因为常规方法依赖于计算响应函数(kramers-heisenberg公式),该响应函数是从频域中散射过程的扰动分析获得的。这需要了解一套全套本征态,以说明所有中间过程远离平衡,从而将适用性限制在小型拖动系统中。在这项工作中,我们提出了一个替代范式,重新阐述了时间域中的问题,并明确地求解了时间依赖的schrödinger方程,而没有扰动理论的局限性:对实际实验中发生的散射过程的忠实模拟,包括光子和核心电子。我们展示了这种方法如何产生强烈相互作用的多体系统的全职和动量解析谐振X射线散射(RIX)频谱。我们使用时间依赖性密度矩阵重新归一化组方法来应用于莫特(Mott)绝缘链的形式主义,该方法不需要对本征态的先验知识,并且可以用数十个轨道溶解非常大的系统。这种方法可以很容易地应用于平衡的系统中,而无需修改并推广到其他光谱镜。
While new light sources allow for unprecedented resolution in experiments with X-rays, a theoretical understanding of the scattering cross-section is lacking. In the particular case of strongly correlated electron systems, numerical techniques are quite limited, since conventional approaches rely on calculating a response function (Kramers-Heisenberg formula) that is obtained from a perturbative analysis of scattering processes in the frequency domain. This requires a knowledge of a full set of eigenstates in order to account for all intermediate processes away from equilibrium, limiting the applicability to small tractable systems. In this work, we present an alternative paradigm, recasting the problem in the time domain and explicitly solving the time-dependent Schrödinger equation without the limitations of perturbation theory: a faithful simulation of the scattering processes taking place in actual experiments, including photons and core electrons. We show how this approach can yield the full time and momentum resolved Resonant Inelastic X-Ray Scattering (RIXS) spectrum of strongly interacting many-body systems. We demonstrate the formalism with an application to Mott insulating Hubbard chains using the time-dependent density matrix renormalization group method, which does not require a priory knowledge of the eigenstates and can solve very large systems with dozens of orbitals. This approach can readily be applied to systems out of equilibrium without modification and generalized to other spectroscopies.