论文标题
超级强子饼干的衰减$ h \ toτμ$
Flavor-changing decay $h\to τμ$ at super hadron colliders
论文作者
论文摘要
我们研究了$τ=τ^ - +τ^+$和$μ=μ=μ^ - +μ^ - +μ^+$ higgs boson的$τ=τ^ - +τ^+$ higgs boson的$ h \ $ higgs boson的$ h \ $ higgs boson的$ h \ $ h \ $ higgs boson,我们研究了风味的变化衰减$ h \ $:a)高亮度大型Hadon collider,b)高能量大型HADRON COLLIDER,我们研究了风味的衰减。所采用的理论框架是III型的两型二键型模型。涉及计算的自由模型参数通过Higgs玻色子数据,违反Lepton风味过程和MUON异常磁偶极矩来限制;后来,它们用于分析衰减$ h \toτμ$的分支比率,并评估$ gg \ to H $生产横截面。我们发现,在大型强子对撞机上,不可能通过考虑其最终集成的发光度,300 fb $^{ - 1} $来索取衰减$ h \toτμ$的证据。在高光度大强壮的强子对撞机上出现更有希望的结果,当实现3 ab $^{ - 1} $和$ \tanβ= 8 $的集成光度时,预测为4.6 $σ$。同时,在高能量上,大型强子撞机(未来的强子 - 海德隆圆形对撞机)可能会发现潜在的发现,具有3 ab $^{ - 1} $的集成发光度约为5.04σ$($5.43σ$)的信号意义,$5.43σ$),$^{ - 1} $和$ \tanβ= 8 $^= 8 $^ab^ab^ab^{-1 ab^{ - 1 ab^{ - $ 1} $} $和$ \ $ \ tanp = 4 $ \ tan = 4 $ \ tan = 4 $ \ tane。
We study the flavor-changing decay $h\to τμ$ with $τ=τ^-+τ^+$ and $μ=μ^-+μ^+$ of a Higgs boson at future hadron colliders, namely: a) High Luminosity Large Hadron Collider, b) High Energy Large Hadron Collider and c) Future hadron-hadron Circular Collider. The theoretical framework adopted is the Two-Higgs-Doublet Model type III. The free model parameters involved in the calculation are constrained through Higgs boson data, Lepton Flavor Violating processes and the muon anomalous magnetic dipole moment; later they are used to analyze the branching ratio of the decay $h\toτμ$ and to evaluate the $gg\to h$ production cross section. We find that at the Large Hadron Collider is not possible to claim for evidence of the decay $h\toτμ$ achieving a signal significance about of $1.46σ$ by considering its final integrated luminosity, 300 fb$^{-1}$. More promising results arise at the High Luminosity Large Hadron Collider in which a prediction of 4.6$σ$ when an integrated luminosity of 3 ab$^{-1}$ and $\tanβ=8$ are achieved. Meanwhile, at the High Energy Large Hadron Collider (Future hadron-hadron Circular Collider) a potential discovery could be claimed with a signal significance around $5.04σ$ ($5.43σ$) for an integrated luminosity of 3 ab$^{-1}$ and $\tanβ=8$ (5 ab$^{-1}$ and $\tanβ=4$).