论文标题

基于图像的自动识别和无脊椎动物的生物量估计

Automatic image-based identification and biomass estimation of invertebrates

论文作者

Ärje, Johanna, Melvad, Claus, Jeppesen, Mads Rosenhøj, Madsen, Sigurd Agerskov, Raitoharju, Jenni, Rasmussen, Maria Strandgård, Iosifidis, Alexandros, Tirronen, Ville, Meissner, Kristian, Gabbouj, Moncef, Høye, Toke Thomas

论文摘要

了解生物社区如何应对环境变化是生态学和生态系统管理中的关键挑战。昆虫种群的明显下降需要更多的生物监测,但是耗时的分类和识别分类群对可以处理多少昆虫样品产生了强烈的限制。反过来,这影响了完全绘制无脊椎动物多样性的努力的规模。鉴于计算机视觉的最新进展,我们建议用基于自动图像的技术代替基于人类的分类和识别的标准手动方法。我们描述了一台基于机器人的标识机,该机器可以自动化无脊椎动物识别,生物量估计和样品排序的过程。我们使用成像装置生成陆地节肢动物物种的综合图像数据库。我们使用此数据库来测试分类精度,即从机器拍摄的图像可以预测样品的物种身份。我们还测试了分类精度对相机设置(光圈和曝光时间)的敏感性,以便以最佳的图像质量向前迈进。我们将最新的Resnet-50和InceptionV3 CNN用于分类任务。初始数据集的结果非常有前途($ \叠加{acc} = 0.980 $)。该系统是一般的,也可以轻松地用于其他无脊椎动物组。因此,我们的结果为生成有关无脊椎动物丰度,多样性和生物量的空间和时间变化的更多数据铺平了道路。

Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map invertebrate diversity altogether. Given recent advances in computer vision, we propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identification machine, which can automate the process of invertebrate identification, biomass estimation and sample sorting. We use the imaging device to generate a comprehensive image database of terrestrial arthropod species. We use this database to test the classification accuracy i.e. how well the species identity of a specimen can be predicted from images taken by the machine. We also test sensitivity of the classification accuracy to the camera settings (aperture and exposure time) in order to move forward with the best possible image quality. We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task. The results for the initial dataset are very promising ($\overline{ACC}=0.980$). The system is general and can easily be used for other groups of invertebrates as well. As such, our results pave the way for generating more data on spatial and temporal variation in invertebrate abundance, diversity and biomass.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源