论文标题

Fisheye城市驾驶图像的通用语义细分

Universal Semantic Segmentation for Fisheye Urban Driving Images

论文作者

Ye, Yaozu, Yang, Kailun, Xiang, Kaite, Wang, Juan, Wang, Kaiwei

论文摘要

语义分割是自主驾驶领域的关键方法。在执行语义图像细分时,更广泛的视野(FOV)有助于获取有关周围环境的更多信息,从而使自动驾驶更安全,更可靠,这可以由Fisheye摄像机提供。但是,大型公共鱼眼数据集不可用,并且带有大型FOV的鱼眼捕获的鱼眼图像带有大变形,因此无法直接使用通常使用的语义分割模型。在本文中,提出了七个自由度(DOF)增强方法,以更全面的方式将直线图像转化为鱼眼图像。在训练过程中,直线图像在七个DOF中转化为鱼眼图像,这模拟了通过不同位置,方向和焦距的相机拍摄的鱼眼图像。结果表明,使用七型增强的训练可以提高模型对不同扭曲的鱼眼数据的准确性和鲁棒性。这种七型增强功能为在不同自动驾驶应用中的鱼眼相机提供了通用的语义分割解决方案。此外,我们为自动驾驶的增强提供了特定的参数设置。最后,我们在真实的鱼眼图像上测试了我们的通用语义分割模型,并获得了令人满意的结果。代码和配置在https://github.com/yaozhuwa/fisheyeseg上发布。

Semantic segmentation is a critical method in the field of autonomous driving. When performing semantic image segmentation, a wider field of view (FoV) helps to obtain more information about the surrounding environment, making automatic driving safer and more reliable, which could be offered by fisheye cameras. However, large public fisheye datasets are not available, and the fisheye images captured by the fisheye camera with large FoV comes with large distortion, so commonly-used semantic segmentation model cannot be directly utilized. In this paper, a seven degrees of freedom (DoF) augmentation method is proposed to transform rectilinear image to fisheye image in a more comprehensive way. In the training process, rectilinear images are transformed into fisheye images in seven DoF, which simulates the fisheye images taken by cameras of different positions, orientations and focal lengths. The result shows that training with the seven-DoF augmentation can improve the model's accuracy and robustness against different distorted fisheye data. This seven-DoF augmentation provides a universal semantic segmentation solution for fisheye cameras in different autonomous driving applications. Also, we provide specific parameter settings of the augmentation for autonomous driving. At last, we tested our universal semantic segmentation model on real fisheye images and obtained satisfactory results. The code and configurations are released at https://github.com/Yaozhuwa/FisheyeSeg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源